Impulse Level 3 Physics

January 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall from Last Time

Momentum

p = m * v

Note that p is the symbol for momentum.

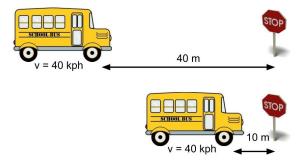
Recall from Last Time

Momentum

p = m * v

Note that p is the symbol for momentum.

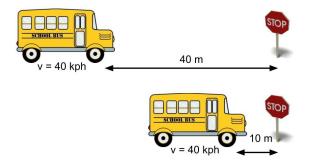
Conservation of Momentum


The net momentum of a system remains constant when there is no net force on the system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Relating Momentum and Force

Consider these two situations of a school bus making a stop.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Relating Momentum and Force

Consider these two situations of a school bus making a stop.

It appears that given constant change in momentum, force and time are inversely related.

Relating Momentum and Force

Make the assumption that mass and acceleration (and therefore force) are constant.

$$F = m * a$$

$$F = m * \frac{\Delta v}{\Delta t}$$

$$F = \frac{\Delta (m * v)}{\Delta t}$$

$$F = \frac{\Delta p}{\Delta t}$$

 $\Rightarrow \Delta p = F * \Delta t$

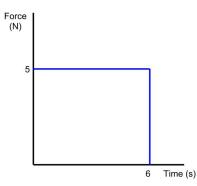
Definition

Impulse is the change in momentum. It is given by the formula

$$J = F * \Delta t = p_f - p_i$$

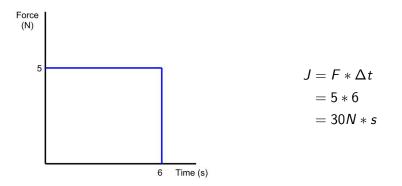
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where force is constant.


Note that J is the symbol for impulse.

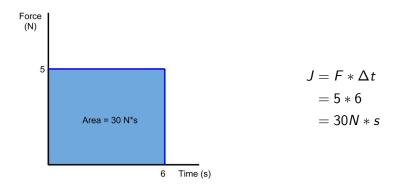
Reading Graphs

What is the impulse of a system undergoing change described by this graph?


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

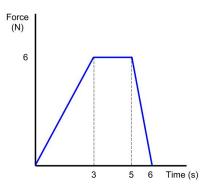
Reading Graphs

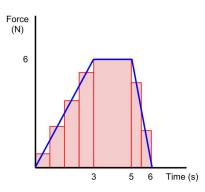
What is the impulse of a system undergoing change described by this graph?



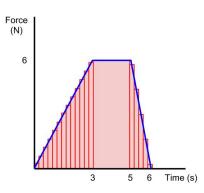
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Reading Graphs

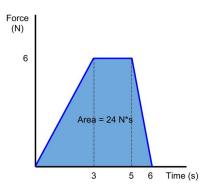

What is the impulse of a system undergoing change described by this graph?


What is the impulse of a system undergoing change described by this graph?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで


What is the impulse of a system undergoing change described by this graph?

Approximate the graph using segments of constant force



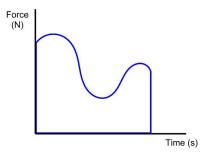
What is the impulse of a system undergoing change described by this graph?

Approximate the graph using segments of constant force

What is the impulse of a system undergoing change described by this graph?

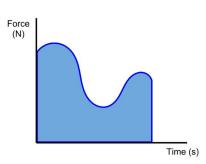
Approximate the graph using segments of constant force

Impulse is the area under a force-time graph


$$J = \sum F * \Delta t$$

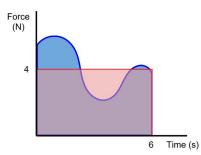
= 0.5(6)(3) + 6(2) + 0.5(6)(1)
= 9 + 12 + 3
= 24N * s

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


Suppose there is a system that undergoes the change described by the graph below.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

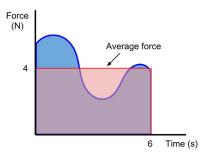
Suppose there is a system that undergoes the change described by the graph below.



It is difficult to find the area

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose there is a system that undergoes the change described by the graph below.



It is difficult to find the area

Suppose a horizontal line is drawn such that the area of the blue and pink regions are equal. What does the horizontal line represent?

Suppose there is a system that undergoes the change described by the graph below.

It is difficult to find the area

Suppose a horizontal line is drawn such that the area of the blue and pink regions are equal. What does the horizontal line represent? **Average force**

Finding Averages

Why does finding a horizontal line that produces the same area give the average force?

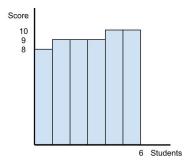
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finding Averages

Why does finding a horizontal line that produces the same area give the average force?

Let's consider a similar problem of finding the average of students' test scores.

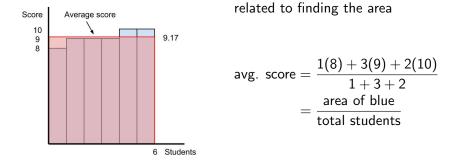
Suppose 1 student gets 8/10, 3 students get 9/10, and 2 students get 10/10.


avg. score =
$$\frac{1(8) + 3(9) + 2(10)}{1 + 3 + 2}$$

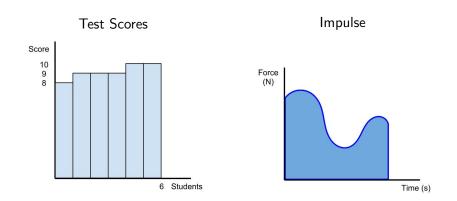
= $\frac{55}{6}$
= 9.17

Averages using Graphs

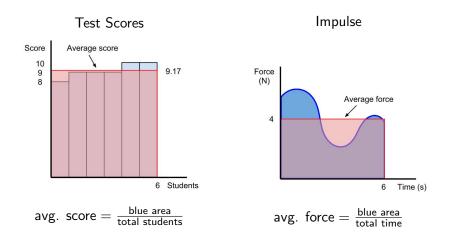
Now consider the test scores problem using a graph.


▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Graphs


Averages using Graphs

Now consider the test scores problem using a graph.


The calculation we did before is

Back to Average Force

くりょう 山口 マイボット ボット 白マ

Back to Average Force

Im	pul	lse

— Theory

Definitions

Impulse

Impulse is the change in momentum. It is given by the formula

$$J = F * \Delta t = p_f - p_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where force is constant.

Note that J is the symbol for impulse.

Im	pul	lse

— Theory

Definitions

Impulse

Impulse is the change in momentum. It is given by the formula

$$J = F * \Delta t = p_f - p_i$$

where force is constant.

Note that J is the symbol for impulse.

Average Force

Average force is given by the formula

average force
$$= \frac{J}{\Delta t} = \frac{p_f - p_i}{\Delta t}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Applications

Why do we care about impulse and average force?

Relevance

Why do we care about impulse and average force?

Hint: The strongest bones in a human body can withstand up to 4000 N of force without breaking.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relevance

Why do we care about impulse and average force?

Hint: The strongest bones in a human body can withstand up to 4000 N of force without breaking.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hint: Force and time are inversely related in the formula for average force.

Applications

Importance

Pole Vaulting

The landing mat increases the time of impact, decreasing the average force the pole vaulter experiences.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

— Applications

-Importance

Boxing

Similarly, boxing gloves and helmets increase the time of impact, decreasing the average force experienced by the boxer.

- Applications

-Importance

Gymnastics

Gymnasts are taught to land with their knees bent. This increases the time of impact, reducing the force on their lower body.

- Applications

Importance

Airbags

During car crashes, air bags inflate in order to increase the time of impact.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Units

What are the units of impulse?

- 1 N*s
- 2 kg*m/s
- **3** Both N*s and kg*m/s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Units

What are the units of impulse?

- 1 N*s
- 2 kg*m/s
- **3** Both N*s and kg*m/s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Impulse

Impulse has which of the following?

- 1 Magnitude
- 2 Direction
- 3 Magnitude and direction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Impulse

Impulse has which of the following?

- Magnitude
- 2 Direction
- **3** Magnitude and direction

(Note that the direction of the impulse also tells you the direction of the average force.)

Dough

A piece of dough with mass 0.5 kg is traveling downward at a speed of 1 $\frac{m}{s}$. It lands on the table and sticks. If the coordinate system is defined such that up is positive, what is the impulse?

- 1 0 N*s
- 2 0.5 N*s
- 3 -0.5 N*s

Dough

A piece of dough with mass 0.5 kg is traveling downward at a speed of 1 $\frac{m}{s}$. It lands on the table and sticks. If the coordinate system is defined such that up is positive, what is the impulse?

- 1 0 N*s
- 2 0.5 N*s
- 3 -0.5 N*s

Tennis ball

Concept Questions

You throw a tennis ball with mass 0.05 kg at the ground at a speed of $2\frac{m}{s}$. It makes contact with the ground for 0.1 seconds, and then the tennis ball bounces up at a speed of $2\frac{m}{s}$. What is the magnitude and direction of the average force experienced by the tennis ball?

- 1 2 N, upward
- 2 2 N, downward
- 3 1 N, upward
- 4 1 N, downward

Tennis ball

Concept Questions

You throw a tennis ball with mass 0.05 kg at the ground at a speed of $2\frac{m}{s}$. It makes contact with the ground for 0.1 seconds, and then the tennis ball bounces up at a speed of $2\frac{m}{s}$. What is the magnitude and direction of the average force experienced by the tennis ball?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 2 N, upward

- 2 2 N, downward
- 3 1 N, upward
- 4 1 N, downward