Liceo Scientifico "L. Cremona" - Milano. TEST DI FISICA. Magnetismo.		Classe:
TEST DI FISICA. Wagnetismo.		Docente. W. Saita
Cognome:	Nome:	Dicembre 2015

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo.

Tempo della prova: 55 minuti. ¹

Quesito 1.

Un conduttore metallico ABCD, di resistenza trascurabile, è stato piegato a forma di U in modo tale che i due tratti paralleli siano alla distanza di 5 cm. Su di esso può traslare orizzontalmente, senza attrito, il conduttore PQ la cui resistenza è pari a $R=5\,\Omega$. Il conduttore viene mantenuto in moto alla velocità costante di $10\,\mathrm{m/s}$ (direzione e verso della velocità \mathbf{v} sono mostrati in figura).

Il dispositivo viene immerso in un campo magnetico ${\bf B}$ uniforme e costante, diretto perpendicolarmente rispetto al piano che contiene il circuito e con il verso specificato in figura. L'intensità del campo magnetico è $B=0.2\,\mathrm{T}$. Calcolare

- 1. il valore della corrente indotta nel circuito.
- 2. la potenza che occorre spendere per mantenere in movimento il conduttore mobile.

(Trascurare l'autoinduzione del circuito).

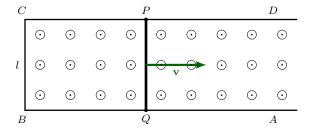


Figura 1

Quesito 2. Un dispositivo elettronico che funziona con una tensione di 12 V, viene collegato mediante un trasformatore a una presa da 220 V di un appartamento. Se la bobina primaria del trasformatore ha 100 avvolgimenti qual è il numero di avvolgimenti della bobina secondaria?

¹File tex: verifica03_magnetismo_5e_2015.tex

Quesito 3. In un alternatore il flusso $\Phi(\mathbf{B})$ del campo magnetico varia rispetto al tempo secondo la legge

$$\Phi(\mathbf{B}) = 100\cos 4t$$

Determinare

- 1. la forza elettromotrice indotta f_i in funzione del tempo.
- 2. la corrente indotta i in funzione del tempo (si supponga una resistenza pari a R).
- 3. i grafici di f_i e i.

Quesito 4. Una spira rettangolare si muove orizzontalmente, da sinistra verso destra, con velocità $v=12\,\mathrm{m/s}$. Le dimensioni della spira sono $20\,\mathrm{cm}$ e $10\,\mathrm{cm}$; essa passa da una regione di piano in cui è presente un campo magnetico $\mathbf B$ uniforme e costante, di intensità $B=0,5\,\mathrm{T}$ (direzione e verso sono quelli mostrati in figura), a una regione in cui il campo magnetico è nullo. Determinare la velocità di variazione del flusso magnetico attraverso la spira quando la spira stessa

- 1. è completamente immersa nel campo magnetico.
- 2. è appena entrata nella regione priva di campo.
- 3. si trova completamente nella regione priva di campo.

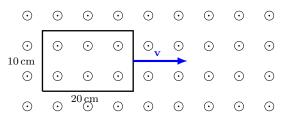


Figura 2

Quesito 5. Si vuole costruire un'induttanza da $50,0\,\mathrm{mH}$ avvolgendo un filo di rame isolato (diametro = $0,0332\,\mathrm{cm}$) su un tubo a sezione circolare di raggio $2,67\,\mathrm{cm}$. Trovare la lunghezza del filo nell'ipotesi che l'avvolgimento attorno al tubo venga realizzata in un singolo strato aderente.

Soluzioni

Quesito 1.

1. Agli estremiP,Q del conduttore si ha una tensione pari a

$$f = Blv = 0.2 \,\mathrm{T} \cdot (5 \cdot 10^{-2} \,\mathrm{m}) \cdot 10 \,\mathrm{m/s} = 0.1 \,\mathrm{V}$$

L'intensità di corrente vale

$$i = \frac{f}{R} = \frac{Blv}{R} = \frac{0.1 \,\text{V}}{5 \,\Omega} = 2 \cdot 10^{-2} \,\text{A}$$

Il verso della corrente, in accordo con la legge di Lenz, è orario.

2. La forza \mathbf{F} che agisce sul conduttore PQ ha intensità

$$F = B i l = B \frac{B l v}{R} l = \frac{B^2 v l^2}{R}$$

La direzione di \mathbf{F} è parallela a AD e ha verso opposto rispetto a alla velocità \mathbf{v} .

Pertanto per mantenere il conduttore in moto con velocità costante ${\bf v}$ occorre applicare al conduttore la forza esterna ${\bf f}$ uguale e contraria a ${\bf F}$. Serve spendere la potenza meccanica

$$P_m = F v = \frac{B^2 v^2 l^2}{B} = 2 \cdot 10^{-3} \,\text{W}$$

Quesito 2. Se N_p, N_s indicano il numero di avvolgimenti della boina primaria e di quella secondaria e V_p, V_s le tensioni ai capi della boina primaria e di quella secondaria allora si ha

$$\frac{N_s}{N_n} = \frac{V_s}{V_n}$$

Nel caso proposto, il numero di avvolgimenti N_s della bobina secondaria è

$$N_s = 100 \, \frac{12 \, \mathrm{V}}{220 \, \mathrm{V}} = 5, 5 \text{ avvolgimenti}$$

Quesito 3. Essendo $\Phi(\mathbf{B}(t)) = 100\cos 4t$ si ottiene: $\frac{d}{dt}\Phi(\mathbf{B}(t)) = -400\sin 4t$.

Dalla legge di Lenz si ricava

$$f_i = -\frac{d}{dt}\Phi(\mathbf{B}(t)) = 400\sin 4t$$

Infine, l'intensità di corrente in funzione del tempo è

$$i = \frac{f_i}{R} = 40\sin 4t$$

Grafici di f.e.m e corrente

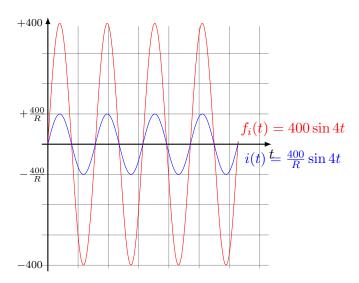


Figura 3: f_i e i sono in fase.

Quesito 4.

- 1. Quando la spira è completamente immersa nel campo magnetico non vi è variazione di flusso. Quindi $\frac{d\Phi(\mathbf{B})}{dt}=0$; nel circuito non passa corrente.
- 2. Si supponga che all'istante t_0 il lato verticale destro della spira stia per uscire dalla regione di piano interessata dal campo magnetico. Dopo un intervallino di tempo Δt (ossia all'istante $t_0 + \Delta t$), la spira ha percorso un tratto pari a $dl = v \Delta t$. Se l, h indicano rispettivamente lunghezza e altezza della spira si ha:

$$\frac{d\Phi(\mathbf{B})}{dt}\bigg|_{t=t_0} = \lim_{\Delta t \to 0} \frac{B(l - v\Delta t)h - Blh}{\Delta t} = -Bvh$$

Nel caso del problema qui proposto si ottiene:

$$\left. \frac{d\Phi(\mathbf{B})}{dt} \right|_{t=t_0} = -0.5 \,\mathrm{T} \cdot 12 \,\mathrm{m/s} \cdot 0.1 \,\mathrm{m} = -0.6 \,\mathrm{V}$$

3. Quando la spira è completamente nella regione priva di campo magnetico non vi è variazione di flusso. Quindi $\frac{d\Phi(\mathbf{B})}{dt} = 0$; nel circuito non passa corrente.

Quesito 5.

L'induttanza di un solenoide è data da $L = \mu_0 n^2 A l$, dove l è la lunghezza del solenoide, n il numero di spire N per unità di lunghezza $(n = \frac{N}{l})$ e A la sezione.

La lunghezza del solenoide è il prodotto delle N spire del solenoide per il diametro d del filo di rame, $l=N\,d$

Si ottiene:

$$L = \mu_0 \, \frac{N^2}{l^2} \, A \, l = \mu_0 \, \frac{N^2}{N^2 \, d^2} \, A \, N \, d = \mu_0 \, \frac{N \, A}{d}$$

Il numero N di spire del solenoide è

$$N = \frac{L d}{\mu_0 A} = \frac{(50 \cdot 10^{-3}) \cdot (3, 32 \cdot 10^{-3})}{(4\pi \cdot 10^{-7}) \cdot \pi \cdot (2, 67 \cdot 10^{-2})^2} \sim 5898$$

Quindi, per costruire il solenoide, servono

$$5898 \cdot (2\pi \cdot 2, 67 \cdot 10^{-2}) \,\mathrm{m} \sim 989 \,\mathrm{m}$$

di filo di rame.