2. Funzioni a più variabili

Mauro Saita

e-mail: maurosaita@tiscalinet.it Versione provvisoria, aprile 2015.¹

Indice

1	Massimi e minimi.		1
	1.1	Massimi e minimi liberi di funzioni di due variabili	1
	1.2	Massimi e minimi di una funzione su una varietà	3
2	Esercizi		6
	2.1	Soluzioni	8

1 Massimi e minimi.

1.1 Massimi e minimi liberi di funzioni di due variabili.

Per quanto riguarda la determinazione di massimi e minimi liberi serve ricordare quanto segue

1. Formula di Taylor con resto nella forma di Peano. Sia $A \xrightarrow{f} \mathbb{R}$ una funzione di classe C^2 su un aperto A di \mathbb{R}^2 e $\mathbf{x}_0 = (x_0, y_0)$ un punto fissato in A. Allora, per $\mathbf{h} = (h, k) \longrightarrow (0, 0)$ si ha:

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + f_x(\mathbf{x}_0)h + f_y(\mathbf{x}_0)k + \frac{1}{2} \left[f_{xx}(\mathbf{x}_0)h^2 + 2f_{xy}(\mathbf{x}_0)hk + f_{yy}(\mathbf{x}_0)k^2 \right] + o(|\mathbf{h}|^2)$$

- 2. Punti stazionari. Sia $A \xrightarrow{f} \mathbb{R}$ una funzione definita su un aperto A di \mathbb{R}^2 . Un punto $\mathbf{x}_0 \in A$ si dice stazionario per f (oppure critico per f) se f è differenziabile in \mathbf{x}_0 e il differenziale di f in \mathbf{x}_0 è nullo. (Oppure, in modo equivalente, se il gradiente $\nabla f(\mathbf{x}_0)$ di f in \mathbf{x}_0 è nullo).
- 3. Punti di minimo (massimo) locale. Sia $A \xrightarrow{f} \mathbb{R}$ una funzione definita su un aperto A di \mathbb{R}^2 . Un punto $x_0 \in A$ si dice punto di minimo locale per f, se esiste un intorno U di \mathbf{x}_0 in \mathbb{R}^2 tale che

$$\forall x \in U \cap A$$
 $f(\mathbf{x}) \ge f(\mathbf{x}_0)$

Un punto $\mathbf{x}_0 \in A$ si dice punto di massimo locale per f, se esiste un intorno U di \mathbf{x}_0 in \mathbb{R}^2 tale che

$$\forall x \in U \cap A$$
 $f(\mathbf{x}) < f(\mathbf{x}_0).$

4. Punti interni di minimo (o di massimo) locale sono stazionari. $^{^{f}}$

Sia $A \xrightarrow{f} \mathbb{R}$ una funzione definita su un aperto A di \mathbb{R}^2 , \mathbf{x}_0 un punto di A e f differenziabile in \mathbf{x}_0 , allora

¹Nome file: Es02_analisi_matematica2.tex

se \mathbf{x}_0 è un punto di minimo (o di massimo) locale per f

 \mathbf{x}_0 è un punto stazionario per f, cioè $\nabla f(\mathbf{x}_0) = 0$

5. Forma quadratica hessiana.

Sia $A \xrightarrow{f} \mathbb{R}$ una funzione definita su un sottoinsieme A di \mathbb{R}^2 e sia \mathbf{x}_0 un punto interno ad A. Se in un intorno di \mathbf{x}_0 la funzione f è almeno di classe C^2 e \mathbf{x}_0 è un punto stazionario per f, la formula di Taylor al secondo ordine nel punto \mathbf{x}_0 è

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = \frac{1}{2!} \left[f_{xx}(\mathbf{x}_0)h^2 + 2f_{xy}(\mathbf{x}_0)hk + f_{yy}(\mathbf{x}_0)k^2 \right] + o(|\mathbf{h}|^2)$$
(1.1)

dove $\mathbf{h} = (h, k)$.

Si chiama forma quadratica hessiana la funzione nelle variabili h, k

$$q(h,k) = f_{xx}(\mathbf{x}_0)h^2 + 2f_{xy}(\mathbf{x}_0)hk + f_{yy}(\mathbf{x}_0)k^2$$
(1.2)

Si chiama $matrice\ hessiana\ di\ f\ nel\ punto\ \mathbf{x}_0$ la matrice

$$H(f)_{\mathbf{x}_0} = \left[\begin{array}{cc} f_{xx}(\mathbf{x}_0) & f_{yx}(\mathbf{x}_0) \\ f_{xy}(\mathbf{x}_0) & f_{yy}(\mathbf{x}_0) \end{array} \right]$$

6. Studio dei punti stazionari con la forma quadratica.

Sia $A \xrightarrow{f} \mathbb{R}$ una funzione di classe C^2 sull'aperto A di \mathbb{R}^2 , $\mathbf{x}_0 \in A$ un punto stazionario di f,

$$q(h,k) = f_{xx}(\mathbf{x}_0)h^2 + 2f_{xy}(\mathbf{x}_0)hk + f_{yy}(\mathbf{x}_0)k^2$$
(1.3)

la forma quadratica di f in \mathbf{x}_0 ,

$$H = H(f)_{\mathbf{x}_0} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right]$$

la matrice hessiana di f valutata in \mathbf{x}_0 .

H è diagonalizzabile perchè simmetrica (teorema spettrale), cioè esiste una base ortonormale \mathcal{B}' di \mathbb{R}^2 che diagonalizza q. Questo significa che, dette (h', k') le coordinate rispetto a tale base, si ha

$$q(h', k') = \lambda_1(h')^2 + \lambda_2(k')^2$$

Pertanto il segno della forma quadratica dipende dai segni degli autovalori λ_1, λ_2 di H. I due autovalori sono le radici (reali) del polinomio caratteristico

$$\lambda^2 - (a+c)\lambda + ac - b^2 = 0$$

ossia

$$\lambda^2 - (\operatorname{tr} H)\lambda + \det H = 0$$

Vale il seguente risultato:

- (a) se det H > 0 e tr H > 0 (cioè $\lambda_1, \lambda_2 > 0$) la forma quadratica è definita positiva; \mathbf{x}_0 è un punto di minimo locale.
- (b) se det H > 0 e tr H < 0 (cioè $\lambda_1, \lambda_2 < 0$) la forma quadratica è definita negativa; \mathbf{x}_0 è un punto di massimo locale.
- (c) se det H < 0 (cioè $\lambda_1 < 0 < \lambda_2$) la forma quadratica è indefinita; \mathbf{x}_0 è un punto di sella.
- (d) se det H=0 (cioè $\lambda_1=0,\,\lambda_2>0$ oppure $\lambda_1<0,\,\lambda_2=0$) la forma quadratica è semidefinita; non è possibile determinare la natura di \mathbf{x}_0 dalla sola conoscenza di H.

1.2 Massimi e minimi di una funzione su una varietà

1. Teorema di Weierstrass Sia K un insieme compatto di \mathbb{R}^n . Se $K \xrightarrow{f} \mathbb{R}$ è una funzione continua su K allora f assume su K un valore massimo M e un valore minimo m cioè esistono $\mathbf{p}, \mathbf{q} \in K$ per i quali si ha

$$\forall \mathbf{x} \in K \quad m = f(\mathbf{p}) \le f(\mathbf{x}) \le f(\mathbf{q}) = M$$

2. Varietà. Sia A un aperto di \mathbb{R}^3 e $A \stackrel{g}{\longrightarrow} \mathbb{R}$ una funzione di classe $C^1(A)$. L'insieme

$$S = \{ \mathbf{x} \in \mathbb{R}^3 \mid g(\mathbf{x}) = 0 \} \tag{1.4}$$

per il quale

$$\forall \mathbf{p} \in S \quad \nabla g(\mathbf{p}) \neq 0 \tag{1.5}$$

si chiama varietà di dimensione due, o superficie. Se, ad esempio, $g(\mathbf{x}) = x^2 + y^2 + z^2 - 1$, la superficie S è la sfera unitaria di centro l'origine. Se $g(\mathbf{x}) = x + y - z + 2$, la superficie è un piano.

3. Piano tangente a una varietà L'ipotesi di regolarità $\nabla g(\mathbf{p}) \neq 0$ (per ogni $\mathbf{p} \in S$) assicura che in ogni punto $\mathbf{p} \in S$ esiste il piano tangente a S. Tale piano, denotato T_pS o S_p , è costituito da tutti i vettori di \mathbb{R}^3 spiccati dal punto $\mathbf{p} \in S$ e ortogonali al vettore gradiente $\nabla g(\mathbf{p})$. Un modo equivalente, ma più intrinseco, di vedere il piano tangente T_pS è il seguente. Sia $I \xrightarrow{\gamma} S$, $t \mapsto \gamma(t)$, una qualunque curva liscia su S, definita su un intervallo I di \mathbb{R} contentente il numero S0, tale che S0, the per definizione, il vettore velocità di S1 all'istante S2 e ortogonali al vettore velocità di S3 all'istante S4 e ortogonali al vettore velocità di S5 e ortogonali al vettore velocità di S6 e ortogonali al vettore velocità di S7 all'istante S8 e ortogonali al vettore velocità di S9. Per definizione, il vettore velocità di S3 all'istante S4 e ortogonali al vettore velocità di S4 all'istante S5 e ortogonali al vettore velocità di S6 e ortogonali al vettore velocità di S7 all'istante S8 e ortogonali al vettore velocità di S9 e ortogonali al vettore velocità di S9 e ortogonali al vettore velocità di S8 e ortogonali al vettore velocità di S9 e ortogonali al vettore velocità di S8 e ortogonali al vettore velocità di S9 e ortogonali al vettore velocità di S1 e ortogonali al vettore velocità di S2 e ortogonali al vet

$$\gamma'(0) = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t} \tag{1.6}$$

Il piano tangente T_pS è allora costituito da tutti i possibili vettori velocità $\gamma'(0)$ di curve parametrizzate $\gamma(t)$ su S che passano per \mathbf{p} all'istante t=0.

4. Punti di massimo (minimo) locale su una varietà . Sia A un aperto di \mathbb{R}^3 , $A \xrightarrow{f} \mathbb{R}$ una funzione di classe $C^1(A)$ e $S = \{\mathbf{x} \in \mathbb{R}^3 \mid g(\mathbf{x}) = 0\}$ una varietà ($\nabla g \neq 0$ su S). Un punto $\mathbf{p} \in S$ si dice punto di massimo locale di f su S se vale la seguente proprietà: esiste un intorno W di \mathbf{p} in \mathbb{R}^3 tale che per ogni punto $\mathbf{x} \in W \cap S$ si ha

$$f(\mathbf{p}) \ge f(\mathbf{x}) \tag{1.7}$$

Analoga è la definizione di punto di minimo di f su S.

5. Metodo dei moltiplicatori di Lagrange. Sia $\mathbf{p} \in S$ un punto di minimo o di massimo locale per la funzione f sulla varietà S. Allora il gradiente $\nabla f(\mathbf{p})$ è ortogonale alla varietà S nel punto \mathbf{p} , ossia $\nabla f(\mathbf{p})$ è multiplo del gradiente $\nabla g(\mathbf{p})$. Questo equivale a dire che esiste un numero λ per il quale vale

$$\nabla f(\mathbf{p}) = \lambda \, \nabla g(\mathbf{p}) \tag{1.8}$$

Il numero λ si dice moltiplicatore di Lagrange.

Dimostrazione. Si deve dimostrare che il vettore $\nabla f(\mathbf{p})$ è ortogonale a ogni vettore \mathbf{v} che appartiene al piano tangente S_p . Sia dunque \mathbf{v} un qualunque vettore di S_p e sia $\gamma(t), t \in I$, una curva parametrizzata su S (cioè con $\gamma(t) \in S$ per ogni t), che all'istante t = 0 passa per \mathbf{p} con velocità \mathbf{v} :

$$\gamma(0) = \mathbf{p} \qquad \qquad \gamma'(0) = \mathbf{v} \tag{1.9}$$

Per ipotesi, \mathbf{p} è un punto di minimo (o di massimo) di f su S, quindi la funzione di una variabile $f(\gamma(t))$ ha un minimo (locale) in t=0. Dunque la sua derivata si annulla in 0:

$$\frac{d}{dt}\Big|_{t=0} f(\gamma(t)) = 0 \tag{1.10}$$

Ma la derivata di questa funzione composta è data dal prodotto scalare del gradiente di f con il vettore velocità $\gamma'(t)$:

$$\frac{d}{dt}f(\gamma(t)) = (\nabla f)(\gamma(t)) \cdot \gamma'(t) \tag{1.11}$$

Pertanto per t=0 si ha

$$0 = \frac{d}{dt}\Big|_{t=0} f(\gamma(t)) = (\nabla f)(\gamma(0)) \cdot \gamma'(0) = (\nabla f)(\mathbf{p}) \cdot \mathbf{v}$$
 (1.12)

perché $\gamma(0) = \mathbf{p} \in \gamma'(0) = \mathbf{v}$. Dunque $\nabla f(\mathbf{p})$ è ortogonale a \mathbf{v} .

Si può leggere il teorema in questi termini:

Se $\mathbf{x} \in S$ è un punto di minimo o di massimo di f su S, allora deve esistere un numero λ (moltiplicatore di Lagrange) per il quale sono soddisfatte le seguenti equazioni:

$$\begin{cases} \nabla f(\mathbf{x}) &= \lambda \nabla g(\mathbf{x}) \\ g(\mathbf{x}) &= 0 \end{cases}$$
 (1.13)

La prima equazione dice che il vettore $\nabla f(X)$ è ortogonale a S nel punto \mathbf{x} e la seconda che \mathbf{x} appartiene alla superficie (al vincolo) S.

Tutto quanto è stato detto finora vale anche nello spazio \mathbb{R}^2 . In tale caso, si ha una funzione g = g(x, y) definita su un aperto A di \mathbb{R}^2 . Sia C la curva (varietà di dimensione uno) definita da

$$C = \{ \mathbf{x} \in \mathbb{R}^2 \mid g(\mathbf{x}) = 0 \} \tag{1.14}$$

Naturalmente si suppone che $\nabla g(\mathbf{p})$ sia non nullo per ogni \mathbf{p} in C, in modo che esista la retta tangente a C in ogni suo punto. Tale retta tangente è ovviamente la retta passante per \mathbf{p} e ortogonale al vettore $\nabla g(\mathbf{p})$.

6. Il caso di più vincoli. Il metodo dei moltiplicatori di Lagrange vale anche in presenza di più vincoli. Siano $g_1, ..., g_h$ funzioni reali di classe C^1 su \mathbb{R}^n e sia h < n. Si indichi con M l'insieme dei punti di \mathbb{R}^n sui quali tutte le funzioni g_j (j = 1, ..., h) si annullano:

$$M = \{ \mathbf{x} \in \mathbb{R}^n \mid g_1(\mathbf{x}) = \dots = g_h(\mathbf{x}) = 0 \}$$
 (1.15)

Si supponga inoltre che i gradienti $\nabla g_1(\mathbf{p}),, \nabla g_h(\mathbf{p})$ siano linearmente indipendenti in ogni punto \mathbf{p} che appartiene a M. Sotto questa condizione di regolarità, in ogni punto \mathbf{p} di S si può definire lo spazio tangente M_p , che risulta essere uno spazio vettoriale di dimensione n-h. (Si tratta dello spazio di vettori di \mathbb{R}^n uscenti da \mathbf{p} e ortogonali a $\nabla g_1(\mathbf{p}),, \nabla g_h(\mathbf{p})$). Si dice allora che M è una varietà di dimensione n-h. Esattamente come nel caso di un solo vincolo, si dimostra quanto segue:

Se $\mathbf{x} \in M$ è un punto di minimo o di massimo locale per la funzione $\mathbb{R}^n \xrightarrow{f} \mathbb{R}$ (di classe C^1) sulla varietà M, allora esistono h numeri $\lambda_1, ..., \lambda_h$ (detti moltiplicatori di Lagrange) per i quali valgono le equazioni:

$$\begin{cases}
\nabla f(\mathbf{x}) &= \sum_{i=1}^{h} \lambda_i \nabla g_i(\mathbf{x}) \\
g_1(\mathbf{x}) &= 0 \\
g_2(\mathbf{x}) &= 0 \\
\dots \\
g_h(\mathbf{x}) &= 0
\end{cases} \tag{1.16}$$

La prima equazione dice che $\nabla f(\mathbf{x})$ è ortogonale a M nel punto \mathbf{x} , mentre l'ultima dice che \mathbf{x} sta sulla varietà M.

7. Una interpretazione meccanica. Si supponga di voler cercare i punti di equilibrio di un punto materiale \mathbf{p} vincolato a stare su una varietà M, di equazioni

$$g_1(\mathbf{x}) = \dots = g_h(\mathbf{x}) = 0 \tag{1.17}$$

Il punto \mathbf{p} è soggetto simultaneamente agli h vincoli di equazioni $g_i(\mathbf{x}) = 0$, i = 1, ..., h. Si supponga che sul punto agisca una forza conservativa W di potenziale f, vale a dire una forza data da $W = \nabla f$. In base ai principi della statica, possiamo eliminare il vincolo $g_1 = 0$, a patto di introdurre un'altra forza, detta reazione vincolare, che agisce ortogonalmente al vincolo $g_1 = 0$, cioè una forza del tipo $-\lambda_1 \nabla g_1$. In modo analogo si possono eliminare tutti gli altri vincoli, pur di aggiungere le relative reazioni vincolari, che sono del tipo $-\lambda_2 \nabla g_2, ..., -\lambda_h \nabla g_h$. L'equilibrio si raggiunge quando la somma delle forze che agiscono sul punto è nulla, cioè quando

$$\nabla f - \lambda_1 \nabla g_1 - \dots - \lambda_h \nabla g_h = 0 \tag{1.18}$$

2 Esercizi

Esercizio 2.1 Trovare massimi e minimi locali delle seguenti funzioni

a)
$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$$
, $f(x,y) = 2x^3 - 6xy + 3y^2$

b)
$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$$
, $f(x,y) = x^4 + y^4 - 4xy + 1$

c)
$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$$
, $f(x,y) = x^2 + y^2 - 2x - 6y + 14$

d)
$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$$
, $f(x,y) = xy e^{-\frac{x^2+y^2}{2}}$

e)
$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$$
, $f(x,y) = \frac{1}{2}x^2y^2 - 2y^2 + \frac{1}{3}x^3$

Esercizio 2.2 Sia

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}, \ f(x,y) = x^4 - x^2 y^2$$

Determinare i punti critici di f e la loro natura.

Esercizio 2.3 Tra le scatole a forma di parallelepipedo rettangolo di volume assegnato V, si determini quella di area minima.

Esercizio 2.4 Si determini il massimo e il minimo assoluto della funzione

$$Q \xrightarrow{f} \mathbb{R}$$
, $f(x,y) = x^2 + 3y^2 - xy - y$

 $sul\ quadrato\ Q=\{(x,y)\in\mathbb{R}^2\mid 0\leq x\leq 1,\ 0\leq y\leq 1\}.$

Esercizio 2.5 Trovare i punti di massimo, i punti di minimo, il valore massimo e il valore minimo della funzione f(x,y) = xy sulla circonferenza S^1 di equazione $x^2 + y^2 - 1 = 0$.

Esercizio 2.6 Tra tutti i parallelepipedi rettangoli di assegnata superficie totale, trovare quello (se esiste) di volume massimo.

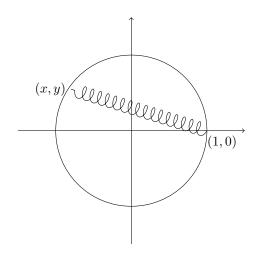
Esercizio 2.7 Sia $X_0 = (x_0, y_0, z_0)$ un punto fissato, diverso dall'origine, in \mathbb{R}^3 . Trovare sulla sfera S^2 di equazione $x^2 + y^2 + z^2 - 1 = 0$ il punto più vicino a X_0 e il punto più lontano da X_0 . (La risposta è ovvia. La si trovi con il metodo dei moltiplicatori di Lagrange).

Esercizio 2.8 Una ditta deve spendere una cifra di denaro pari a 90 per acquistare delle macchine di tipo A al prezzo di 3 l'una e delle macchine di tipo B al prezzo di 5 l'una. Supponiamo che acquisti x macchine A e y macchine B. Per avere la massima utilità, il prodotto xy deve essere massimo. Quante macchine di ogni tipo deve acquistare?

Nota: La funzione f(x,y) (nel nostro esempio f(x,y) = xy) che fornisce l'utilità che deriva dalla vendita di x unità di una merce e di y unità di un'altra, è detta dagli economisti funzione di utilità.

Esercizio 2.9 Trovare i punti sull'ellisse $x^2 + 4y^2 = 4$ a distanza minima, e a distanza massma, dalla retta x + y - 4 = 0.

Esercizio 2.10 2 Un punto materiale di massa m, soggetto alla forza gravitazionale, è vincolato a muoversi lungo la circonferenza verticale $x^2 + y^2 - 1 = 0$ ed è collegato al punto (1,0) da una molla ideale con costante elastica k. Trovare le posizioni di equilibrio (stabile o instabile) del punto, sotto l'azione della forza di gravità e della forza elastica dela molla.



²Enrico Giusti, *Analisi Matematica 2*, Bollati Boringhieri, 1988.

2.1 Soluzioni

Esercizio 2.1

- a) $\frac{\partial f}{\partial x} = 6x^2 6y$ e $\frac{\partial f}{\partial y} = -6x + 6y$. I punti stazionari sono le soluzioni del sistema $\begin{cases} x^2 = y \\ x = y \end{cases}$ ossia i punti (0,0) e (1,1). Inoltre $\frac{\partial^2 f}{\partial x^2} = 12x$, $\frac{\partial^2 f}{\partial x \partial y} = -6$ e $\frac{\partial^2 f}{\partial y^2} = 6$. $H(f)_{(0,0)} = \begin{vmatrix} 0 & -6 \\ -6 & 6 \end{vmatrix}$, $\det H(f)_{(0,0)} = -36 < 0$. Quindi (0,0) è un punto di sella. $H(f)_{(1,1)} = \begin{vmatrix} 12 & -6 \\ -6 & 6 \end{vmatrix}$, $\det H(f)_{(1,1)} > 0$ e tr H > 0. Quindi (1,1) è un punto di minimo.
- b) $\nabla f(x,y) = 0$ in (0,0), (1,1) e (-1,-1). (0,0) è punto di sella, (1,1) è punto di minimo mentre (-1,-1) è punto di massimo. f(1,1) = f(-1,-1) = -1 e f(0,0) = 1.
- c) $\nabla f(x,y) = 0$ in (1,3). Utilizzando il metodo del completamento del quadrato si ottiene $f(x,y) = (x-1)^2 + (y-3)^2 + 4$; per ogni $(x,y) \neq (1,3)$ f(x,y) > 4 mentre in (1,3) la funzione vale zero. Pertanto il punto (1,3) è punto di minimo locale e assoluto per f. Il grafico di f è un paraboloide ellittico.
- d) La funzione è simmetrica rispetto all'origine. I punti critici di f sono: (0,0), (1,1), (1,-1), (-1,1), (-1,-1) L'origine è un punto di sella; (1,1) e (-1,-1) sono massimi locali; (1,-1) e (-1,1) minimi locali.
- e) I punti critici di f sono: (0,0), $(-2,\sqrt{2})$, $(-2,-\sqrt{2})$. Tutti e tre i punti sono punti di sella.

Esercizio 2.2 I punti critici di f sono (0, y), $y \in \mathbb{R}$. (0, 0) è un punto di sella, mentre (0, y), $y \neq 0$ sono punti di massimo locale (studiare il segno di f).

Esercizio 2.3 Siano x,y,z (x,y,z>0) le tre dimensioni del parallelepipedo; la sua superficie totale è

$$S(x, y, z) = 2xy + 2yz + 2xz \tag{2.1}$$

Inoltre vale la condizione

$$V = xyz (2.2)$$

Esplicitando rispetto a z l'uguaglianza (2.2) e sostituendo in (2.1) si ottiene

$$S(x,y) = 2xy + \frac{2V}{x} + \frac{2V}{y}$$

I punti critici di S sono le soluzioni del sistema

$$\begin{cases} \frac{\partial S}{\partial x} = 2y - \frac{2V}{x^2} = 0\\ \frac{\partial S}{\partial y} = 2x - \frac{2V}{y^2} = 0 \end{cases}$$

Si ricava

$$\left\{ \begin{array}{ll} x^2 y &= V \\ xy^2 &= V \end{array} \right. , \quad \left\{ \begin{array}{ll} x^2 y - xy^2 &= 0 \\ xy^2 &= V \end{array} \right. , \quad \left\{ \begin{array}{ll} xy(x-y) &= 0 \\ xy^2 &= V \end{array} \right. .$$

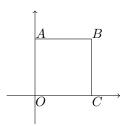
Essendo x, y > 0 si ha

$$\begin{cases} x - y = 0 \\ xy^2 = V \end{cases}, \quad \begin{cases} x = y \\ x^3 = V \end{cases}$$

Quindi
$$x=y=V^{\frac{1}{3}}$$
e $z=\frac{V}{xy}=V^{\frac{1}{3}}.$

Esercizio 2.4

Il dominio di f è rappresentato nella figura qui sotto.



1. Analisi dei punti interni di Q.

I punti critici di f interni al quadrato Q si trovano ponendo $\nabla f(x,y) = 0$, cioè

$$\begin{cases} f_x = 2x - y = 0 \\ f_y = 6y - 1 - x = 0 \end{cases}$$

L'unico punto critico è $(\frac{1}{11}, \frac{2}{11})$; con il metodo dell'hessiano è immediato verificare che tale punto è un minimo locale, risulta inoltre $f(\frac{1}{11}, \frac{2}{11}) = -\frac{1}{11}$.

2. Analisi dei punti che appartengono al bordo ∂Q (esclusi i vertici del quadrato).

 $f(0,y) = 3y^2 - y$ (restrizione di f al lato OA) ha un minimo locale in $y = \frac{1}{6}$ e $f(0,\frac{1}{6}) = -\frac{1}{12}$. $f(x,0) = x^2$ (restrizione di f al lato OC) è sempre crescente.

 $f(x,1)=x^2-x+2$ (restrizione di f al lato AB) ha un minimo locale in $x=\frac{1}{2}$ e $f(\frac{1}{2},1)=\frac{7}{4}$. $f(1,y)=3y^2-2y+1$ (restrizione di f al lato BC) ha un minimo locale in $y=\frac{1}{3}$ e $f(1,\frac{1}{3})=\frac{2}{3}$.

3. Analisi dei vertici del quadrato.

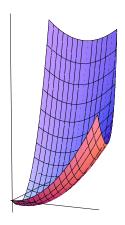


Figura 1: Grafico della funzione $f(x,y) = x^2 + 3y^2 - xy - y$.

$$f(0,0) = 0$$
, $f(0,1) = 2$, $f(1,0) = 1$, $f(1,1) = 2$.

Dal confronto dei valori assunti da f nei punti di massimo o minimo e nei vertici del quadrato segue che il minimo assoluto di f in $Q

è <math>-\frac{1}{11}$, mentre il massimo assoluto è 2.

Esercizio 2.5

Sicuramente esistono almeno un punto di massimo e almeno un punto di minimo, perché f(x,y) = xy è continua e S^1 è un compatto. Anzi, siccome la forma quadratica f(x,y) = xy assume lo stesso valore in punti antipodali su S^1 (cioè f(x,y) = f(-x,-y)), i punti di massimo vengono in coppia (e analogamente i punti di minimo).

 $Primo\ metodo$. Usiamo il metodo dei moltiplicatori di Lagrange. Notiamo che il gradiente di x^2+y^2-1 è (2x,2y), sempre diverso da zero su S^1 . Troviamo i punti stazionari della lagrangiana

$$L(x, y, \lambda) = xy - \lambda(x^2 + y^2 - 1)$$

ossia i punti (x, y, λ) nei quali il gradiente di L si annulla. Il sistema da risolvere è

$$\begin{cases} y - 2\lambda x &= 0\\ x - 2\lambda y &= 0\\ x^2 + y^2 - 1 &= 0 \end{cases}$$
 (2.3)

Dalle prime due equazioni, si ricava

$$2\lambda = \frac{y}{x} = \frac{x}{y}$$

(Si noti che deve essere $x \neq 0$. Infatti, x = 0 implica y = 0, e quindi la terza equazione del sistema non è soddisfatta. Analogamente, si deve avere $y \neq 0$). Allora $x^2 = y^2$. Sostituendo nell'equazione del vincolo $x^2 + y^2 - 1 = 0$ si ottengono i quattro punti

$$A = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \quad A' = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \quad B = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \quad B' = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$

(In questo caso, per risolvere il sistema, non è necessario trovare esplicitamente i valori di λ). Si ha $f(A) = f(A') = \frac{1}{2}$ e $f(B) = f(B') = -\frac{1}{2}$. Quindi A e A' sono punti di massimo e B, B' sono punti di minimo. Il valore massimo è $\frac{1}{2}$ e il valore minimo è $-\frac{1}{2}$.

Secondo metodo. La funzione f(x,y) = xy è una forma quadratica (cioè un polinomio omogeneo di secondo grado). La matrice simmetrica associata a f è

$$A = \left| \begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{array} \right| \tag{2.4}$$

Gli autovalori di A sono $\lambda_1=\frac{1}{2}$ e $\lambda_2=-\frac{1}{2}$. Il massimo degli autovalori (cioè $\lambda_1=\frac{1}{2}$) è il massimo valore che f assume su S^1 , mentre il minimo autovalore ($\lambda_2=-\frac{1}{2}$) è il valore minimo di f su S^1 . I relativi autospazi, soluzioni dei sistemi $AX=\frac{1}{2}X$ e $AX=-\frac{1}{2}X$, sono rispettivamente le rette di equazione:

$$x - y = 0, x + y = 0 (2.5)$$

Gli autovettori unitari

$$A = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \quad A' = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$

(intersezioni della retta x-y=0 con S^1) sono punti di massimo. Analogamente, gli autovettori unitari

$$B = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$
 $B' = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

(intersezioni della retta x + y = 0 con S^1) sono punti di minimo.

Esercizio 2.6

Si tratta di rendere massima la funzione f(x, y, z) = xyz sull'insieme

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0, z \ge 0, \ xy + xz + yz = a^2\}$$
 (2.6)

dove a è un numero positivo assegnato. A priori, non è evidente che la funzione f debba assumere un valore massimo su T, che non è compatto (perché non è limitato). Possiamo però ragionare nel modo seguente. Quando il punto (x,y,z) tende all'infinito, sempre restando su T, il valore f(x,y,z) = xyz tende a zero. Infatti, dall'equazione di T si ricava

$$xy \le a^2$$
 $xz \le a^2$

e quindi

$$f(x, y, z) = xyz \le x \frac{a^2}{x} \frac{a^2}{x} = \frac{a^4}{x}$$

Dunque xyz tende a zero, quando (x, y, z) va all'infinito, stando sull'insieme T. Quindi esiste una sfera (piena) B centrata nell'origine (e di raggio abbastanza grande) tale che nei punti di T che si trovano al di fuori di B, sicuramente f non assume il valore massimo. La parte di T che è contenuta in B è un compatto, sul quale f assume il valore massimo. Tale valore massimo non può essere raggiunto nei punti in cui una delle tre variabili è nulla, perché in tali punti f vale zero. Dunque il valore massimo esiste e viene raggiunto in punti di T con le coordinate positive. In tali punti $\nabla q(x, y, z) = (y + z, x + z, x + y) \neq 0$, quindi si

applica il metodo dei moltiplicatori di Lagrange. Non resta che trovare i punti stazionari della lagrangiana

$$L(x, y, z, \lambda) = xyz - \lambda(xy + xz + yz - a^2)$$

Uguagliando a zero il gradiente di L, si ottiene il sistema:

$$\begin{cases} yz - \lambda(y+z) &= 0\\ xz - \lambda(x+z) &= 0\\ xy - \lambda(x+y) &= 0\\ xy + xz + yz - a^2 &= 0 \end{cases}$$

Allora $\lambda \neq 0$, perché $xyz \neq 0$. Dalle prime due equazioni si ricava

$$\frac{y}{x} = \frac{y+z}{x+z}$$

Di qui yz=xz, ossia y=x. Per simmetria, si deve avere anche x=z. Allora le soluzioni del sistema hanno x=y=z. Sostituendo nell'ultima equazione, si ha $3x^2=a^2$. Quindi esiste un unico punto stazionario di L su T, di coordinate $x=y=z=\frac{a}{\sqrt{3}}$, che non può che essere il punto di massimo del quale abbiamo dimostrato l'esistenza. Dunque il parallelepipedo cercato è il cubo.

Si noti che dall'argomentazione svolta segue anche che non esiste il parallelepipedo (non degenere) che realizzi il volume minimo. (Questo si può facilmente dimostrare in modo più diretto).

Esercizio 2.7

Si tratta di trovare i punti di massimo e di mnimo della funzione

$$f(x, y, z) = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$$

sulla varietà

$$g(x,y) = x^2 + y^2 + z^2 - 1 = 0$$

Il sistema da risolvere è

$$\begin{cases} x - x_0 &= \lambda x \\ y - y_0 &= \lambda y \\ z - z_0 &= \lambda z \\ x^2 + y^2 + z^2 - 1 &= 0 \end{cases}$$

Facendo i conti, si trova che le soluzioni sono

$$X = \frac{X_0}{|X_0|}, X = -\frac{X_0}{|X_0|}$$

(di ovvia interpretazione geometrica) che sono, rispettivamente, il punto più vicino e quello più lontano.

Esercizio 2.8

Si deve rendere massima la funione f(x,y) = xy, soggetta al vincolo

$$g(x,y) = 3x + 5y - 90 = 0$$

Si ha

$$\nabla f(x,y) = (y,x)$$
$$\nabla g(x,y) = (3,5)$$

Il massimo si ha in corrispondenza dei valori di λ per i quali

$$(y, x) = \lambda(3, 5)$$

ossia

$$y = 3\lambda$$
 $x = 5\lambda$

Sostituendo nell'equazione del vincolo 3x + 5y - 90 = 0, si ha $\lambda = 3$. Pertanto il punto di massimo è $(5\lambda, 3\lambda) = (15, 9)$. La risposta è che la ditta deve comprare 15 macchine del tipo A e 9 del tipo B.

Esercizio 2.9 Ricordiamo che la distanza di un punto (x,y) dalla retta ax + by + c = 0 è

$$\frac{|ax + by + c|}{\sqrt{a^2 + b^2}}$$

Nel nostro caso, si tratta di rendere minima o massima la restrizione della funzione distanza

$$\frac{|x+y-4|}{\sqrt{2}}$$

all'ellisse $x^2+4y^2-4=0$. Siccome l'ellisse si trova nel semipiano x+y-4<0, possiamo semmplificare il problema scrivendo -x-y+4 al posto di |x+y-4|. Dunque la funzione da ottimizzare è f(x,y)=-x-y+4 (Abbiamo trascurato il denominatore $\sqrt{2}$). In definitiva si devono trovare il valore massimo e il valore minimo di f(x,y)=-x-y+4 sul vincolo $g(x,y)=x^2+4y^2-4=0$. Poiché l'ellisse è un compatto, per il teorema di Weierstrass tali valori massimo e minimo esistono sicuramente. Il sistema (di Lagrange) da risolvere è il seguente:

$$\begin{cases}
-1 &= \lambda 2x \\
-1 &= \lambda 8y \\
x^2 + 4y^2 - 4 &= 0
\end{cases}$$

Dalle prime due equazioni si ricava x=4y. Dobbiamo ora tenere conto del vincolo (cioè della terza equazione del sistema). Dobbiamo dunque considerare le intersezioni della retta x=4y con l'ellisse $x^2+4y^2-4=0$. Otteniamo i punti

$$(\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}), \qquad (-\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$$

Le distanze di tali punti dalla retta x + y - 4 = 0 si ottengono sostituendo le loro coordinate nell'espressione

$$\frac{-x-y+4}{\sqrt{2}}$$

Tali distanze sono dunque rispettivamente

$$\frac{-\sqrt{5}+4}{\sqrt{2}}, \quad \frac{\sqrt{5}+4}{\sqrt{2}}$$

Dunque il primo punto è quello a distanza minima, il secondo è quello a distanza massima.

Interpretazione geometrica: Nel fascio delle rette (tra loro parallele) ortogonali alla retta x+y-4=0, occorre trovare le rette che (in almeno uno dei punti di intersezione con l'ellisse) taglino l'ellisse ortogonalmente.

Esercizio 2.10

I punti di equilibrio stabile sono quelli in cui l'energia ha un minimo, mentre i punti di equilibrio instabile sono quelli in cui l'energia ha un massimo. L'energia potenziale dovuta al campo gravitazionale è

$$E_1 = mgy$$

(dove g è l'accelerazione di gravità), mentre l'energia dovuta alla forza elastica è

$$E_2 = \frac{1}{2}k[(x-1)^2 + y^2]$$

Si tratta allora di trovare i punti di minimo e di massimo della funzione

$$E(x,y) = mgy + \frac{1}{2}k[(x-1)^2 + y^2]$$
(2.7)

sul vincolo $x^2 + y^2 - 1 = 0$. Un modo per risolvere il problema consiste nel parametrizzare la circonferenza e ricondursi a un problema di massimi e minimi per una funzione di una sola variabile. Vediamo invece come si procede con la tecnica dei moltiplicatori di Lagrange. Il sistema di Lagrange

$$\begin{cases} \nabla E(x,y) - \lambda \nabla (x^2 + y^2 - 1) &= 0 \\ x^2 + y^2 - 1 &= 0 \end{cases}$$
 (2.8)

si scrive nel modo seguente

$$\begin{cases} k(x-1) - \lambda 2x &= 0\\ mg + ky - \lambda 2y &= 0\\ x^2 + y^2 - 1 &= 0 \end{cases}$$
 (2.9)

Dalle prime due equazioni si ricava

$$x = \frac{k}{k - 2\lambda}, \quad y = -\frac{mg}{k - 2\lambda} \tag{2.10}$$

Sostiutendo tali valori nella terza equazione, si ha

$$(k - 2\lambda)^2 = k^2 + m^2 g^2$$

ossia

$$k - 2\lambda = \pm \sqrt{k^2 + m^2 g^2}$$

Sostituendo tali valori di $k-2\lambda$ in 2.10 si trovano i punti

$$P_1 = \left(\frac{k}{\sqrt{k^2 + m^2 g^2}}, \frac{-mg}{\sqrt{k^2 + m^2 g^2}}\right), \qquad P_2 = \left(\frac{-k}{\sqrt{k^2 + m^2 g^2}}, \frac{mg}{\sqrt{k^2 + m^2 g^2}}\right) \tag{2.11}$$

Calcolando i valori di E(x,y) nei due punti P_1, P_2 , si trova

$$E(P_1) = k - \sqrt{k^2 + m^2 g^2}, \quad E(P_2) = -k + \sqrt{k^2 + m^2 g^2}$$

Dunque P_1 è un punto di minimo vincolato (punto di equilibrio stabile) e P_2 è un punto di massimo vincolato (punto di equilibrio instabile).